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Robotic arms have been in common use for a several decades now in many

areas from manufacturing and industrial uses to hobby projects and amusement

park rides. However, there have been very few attempts to make an inexpensive

robot arm with a software stack for use in higher education. This paper will outline

a control and interfacing software stack built on the Robot Operating System (ROS)

and a simulation of the 5 degree of freedom (DoF) robotic arm.
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Chapter 1

Introduction

Robots can be used to teach a wide number of classes and concepts including basic

programming, concurrent programming, dynamics and control, mechatronics,

engineering, electronics, forward and inverse kinematics, computer vision, and

path planning [1, 2, 3, 4]. Currently there are few to no standardized robotic

arm platforms with ready-made software stacks able to use both physical and

simulated robots for teaching in higher education.

The platform introduced in this paper will allow students to implement and

test additions and modifications to the software on their own computers through

the simulation environment, then test their code on the physical robot, without

any need for translation or modification of their code to make it work in the real

world. Using practical examples has been shown to be beneficial to learning, and

especially helps to interest students in the subject and aid in the self-learning

process.
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(a) (b)

(c)

Figure 1.1: (a) When the ROS system first starts up each node connects to the ROS
Master and gives it messages the node publishes and receives on [5]. (b) Each
receiving node will then connect directly to the sending nodes for message passing
[5]. (c) The system will be implemented on a computer running Ubuntu 16.04 and
take input from some source to control the robot arm [5].

1.1 Goals and Requirements

The software control stack for the project is built on the Robot Operating System

(ROS). ROS has become a popular robotics platform for use in many types of

robots [5]. The ROS platform is detailed in Figure 1.1. The system consists of

two parts: the first part is the nodes of the system shown in Figures 1.1a and

1.1b. Nodes are the programs of the system and implement hardware integration,

services, and interaction with the outside. Nodes may be custom built for the

application or may come from the ROS community allowing hardware integration

and other non-focus items to be done faster. The second part of the system is
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message passing, and each node is able to publish and receive messages. ROS

controls the message passing between nodes and sets up the interaction between

nodes as shown in Figure 1.1a. After the initial setup of the communication,

messages are passed directly from one node to the next, as shown by the blue

graph in Figure 1.1b.

The system of nodes and messages makes any software stack created on ROS

a distributed system allowing for implementation flexibility. The functionality of

the project is implemented in the control of both a 3D simulation of and physical

5 DoF SCORBOT-ER III robotic arm. Students can implement or reimplemented

a function of the system by adding or recreating a node, leaving the rest of the

system fully functional.

The functionality and movement of the robot is shown through pre-programmed

tasks such as performing the Towers of Hanoi, it is also able to perform real-time

movement based on inputs from an API.

1.2 Motivation

This project will allow science, technology, math, and engineering (STEM) students

to work on a simulated and physical robot in class. The final product will make

robotics learning and research easier by providing a robot and a software stack

ready-made for immediate use and modification as opposed to each university

and class starting from scratch. This allows the class time and projects to focus on

learning objectives rather than the nuts and bolts of the specific system.
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Chapter 2

Background

2.1 Education

Robots can be used to great effect in the area of education, and recently a greater

emphasis has been placed on the subject due to a focus on science, technology,

engineering, and math (STEM) especially in lower education [1]. Proposals of

programs to introduce robotics into classrooms are very common. Unfortunately

most use solely a simulated environment, or a physical robot, but few use both. A

purely simulated approach can be dissatisfying to students, as seeing a finished

final physical product provides a great deal of motivation and tangibility to the

experience making classes engaging and attractive [6, 1]. A purely physical system

can also be at a disadvantage, as students may only be able to work on the robot

while they are physically in the lab. A physical teaching tool can have a large

effect on the learning process, and if used along side virtual systems they both

can provide a lab environment that engages students in the learning process

[7, 8, 3, 9, 10].

Robotic arms specifically have been used to teach in the areas of basic program-
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ming, concurrent programming, dynamics and control, mechatronics, engineering,

electronics, forward and inverse kinematics, computer vision, and path planning

[1, 2, 3, 4].

Many examples of robots designed for use in a classroom environment have

been proposed for use in lower education teaching. Some of the most basic robots

have been used in the area of early education[9, 11, 12]. These robots many times

use graphical programming languages as is the case of the AERobot designed

by Rubenstein et. all [9]. This robot was designed to be complex enough to

do interesting tasks, such as obstacle detection and line following, but cheap

enough to be affordable in mass to any community [9]. Another example of robots

designed for lower education are the LEGO NXT robots used in the FIRST LEGO

League competitions [11, 12]. These robots are used in competitions for kids from

elementary to high-school, and allows them to design and program the robots

to accomplish tasks in the competition [11, 12]. Though these robots are useful

for teaching entry level programming and for introducing the concepts of robotic

programming, they do not focus as much on the algorithms of the robot or how

the robot actually functions, only the higher level functionality.

The second area for use of robots is in universities, colleges, and other forms

of higher education. This demographic usually focuses more on the intricacies of

robot construction, control algorithms, such as forward and inverse kinematics,

and sensor processing. CHARM is a robotics course developed just for this purpose

by Singh et. all [2]. This course teaches students how to design and program

a robot for coin sorting, and in the process teaches kinematics, path planning,

and robot vision through a coin sorting project [2]. Though this robot is good

for teaching a number of concepts it only uses a three degree of freedom (DoF)

SCARA robot arm. This makes the robot good for teaching in two dimensions,
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but does not allow for three dimensions. The robot may also be hindered in a

lab environment because it does not propose a framework to build on requiring

students to write the entire control system every time rather than focusing on the

algorithms of the system one at a time, therefore a bottom up approach must be

used, and the robot is only useful for the one class, not for a range of classes.

2.2 3D Printing

3D printing has quickly become a common method of rapid prototyping in recent

years [13]. This is due to advances in 3D printing technologies and standardizations

making more wide spread use possible [13]. 3D printers are now common in

universities for use in research and product design. This makes the method ideal

for use in producing products in a distributed fashion for education. 3D Printing

has already been used for robotics research in universities as is the case in the

3D printed hand by Mukhtar et. all [14]. Poppy is another 3D printed platform

designed for education by Lampeyre et. all [15]. Poppy has been used in several

research projects at various universities since its design [16, 17].

Several robotic arm designs are available for free from various sources and

makers, many of which are open-source and modifiable to meet the needs of

the user. There are many simple robot designs available, but these designs have

severely limited degrees of freedom [18, 19, 20]. There are several robot designs

with more degrees that would be better suited for a general purpose robots. One

such robot is the five axis Thor robot by AngelLM, unfortunately a five axis robot

may not be sufficient enough for more advanced classes [21]. Another advanced

design is the Zortrax robot, this robot looks good and is a simple sleek design,

unfortunately not all of the joints are motorized making it unusable for control
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classes [22]. The Moveo arm by BNC3D is a good viable option as a six axis fully

designed robot arm, this would make a good robot for use in a class environment

[23, 24]. The last 3d printed robot design is by Andreas Hölldorfer [25, 26].

2.3 Simulation and Control Software

Simulation software is very common for a variety of different robots. Several

popular robotics simulators exist [27]. These systems include the Virtual Robotics

Toolkit, Robot Virtual Worlds, RoboDK, Microsoft Robotics Developer Studio,

Webots, and Gazebo [27].

Both the Virtual Robotics Tool Kit and Robot Virtual Worlds simulators are

designed for use with LEGO Mindstorms, Vex Robots, and other LEGO based

systems, and primarily target early STEM education [27]. The systems are not

as flexible as others due to their limited target audience, and though they have

been used in higher education, the platform is aimed at first time programmers

[28, 11, 29, 30, 31, 32]. The limits of the system force any modification to the

programming and control of the it to be done in round about methods with external

controllers [31]. The RoboDK, this software is designed for use in industrial

robots and does not allow for externally controlled or open platform robots [27].

Microsoft Robotics Developer Studio has support for a wide array of platforms

and is supported by a large company [27]. Though this has been a well received

platform, support for the software has been canceled, meaning that any knowledge

gained using the platform will be useless as the students go on to future projects

[27]. Webots and Gazebo both officially support the ROS platform, and can be used

to simulate any robot design [27]. Webots is a closed source paid platform, and

therefore the system cannot be as modified for specialized uses [27, 33]. Gazebo,



9

in contrast, is a free, open-source platform and has been used in developing

interactive robots extensively [27]. Gazebo is also can be compiled and run on

Linux, OSX, or Windows [34]. The final simulator available is RViz [35]. RViz

is packaged with ROS in the full desktop installation [35]. RViz works only on

Ubuntu Linux, and does not have support for other operating systems [35].

There are several different software stacks available for robot control. Many of

the software stacks are custom and designed for a single robot. This is the case for

systems such as BRACON by Rivas et. all [36]. If the software is not widespread

enough as an open source software, or is proprietary, it may not allow for the best

use in education as it does not allow for modification for new systems. Many of

these systems only allow limited methods of interaction, such as through gCode,

that is simply a communication format, and does not allow dynamic movement or

feedback.

The Robot Operating System (ROS) is a promising new open source robotic

framework for use in a wide array of robots. ROS has been used in previous

educational robotics projects such as Nelson [37]. Other projects have focused on

extending ROS for use in MATLAB such as in the case of ros4mat [38]. ROS comes

with both control software and a simulation environment that can be controlled

simultaneously. The software is modular, as shown if Figure 1.1 and can be

distributed across devices [5].
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Chapter 3

Implementation: Southern Arm

Control

The Southern Arm Control (SAC) project consists of includes seven ROS packages,

as well as, a setup project to install ROS Kinetic, its components, and the SAC

system.

3.1 Robot Operating System (ROS)

ROS allows for an open-source, easily distributable system that is freely available

to students [5]. The base of a ROS project is a workspace that acts as a container

for the packages of the project [39]. ROS packages are sub-containers within the

project that hold the code for nodes, messages, descriptions, and all other parts of

a ROS system [39, 5]. For message passing between nodes, ROS has two types that

the SAC project uses:

• Messages – Used to pass information one way from a publisher to a subscriber

[40].
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Package Name Description
gazebo8 ros pkgs Used for integrating Gazebo and ROS.
gazebo8 ros control Used for integrating Gazebo and ROS.
ros-control Used for controlling the robot model.
ros controllers Used for controlling the robot model.
moveit Used for picking up and interacting with items in the

world.
gazebo grasp plugin Allows objects to be attached to the robot for pickup and

movement.

Table 3.1: The packages used in the SAC system. The MoveIt! package is not
currently in use in the SAC system.

[43, 44, 45, 46, 47, 48]

• Service – Used to pass information to and receive a response from a service

[41].

Third-party packages can also be distributed and installed into ROS, in which

case, they will reside in the ROS installation directory. The SAC system is built on

the ROS platform. The system uses six external ROS packages, listed in Figure 3.1,

ten custom packages, listed in Figure 3.2, and a setup project for setting up ROS

and the SAC system. This is detailed in Section 3.8 [42].

3.2 Messages

ROS messages are used to pass information between nodes. ROS includes several

basic message types divided into packages:

• Standard Messages – includes messages for basic types such as integers,

floats, and booleans [58].

• Common Messages – includes packages for geometric, sensor, diagnostic,

navigation, and action library messages [59].
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‘
Package Name Description
sac controllers Holds all of the controllers for the SAC system as de-

scribed in Section 3.3.1.
sac description Contains the robot model for use in Gazebo.
sac drivers Holds the drivers for the system to interface with external

robots. See Section 3.3.3.
sac gazebo Holds the world to display the robot and other models in

Gazebo.
sac launch Holds the Global launch files to start the system.
sac translators Holds the nodes for translating inputs to joint angles

space goals as detailed in Section 3.3.2.1.
sac msgs Contains the definitions for the custom message types

used in the SAC system. These are described in Section
3.2.

sac config Not a ROS package, but a project used for setting up ROS,
Gazebo, and the SAC system.

scorbot config Holds the package generated by the MoveIt! Setup Assis-
tant for the scorbot and MoveIt!.

andreas arm config Holds the package generated by the MoveIt! Setup Assis-
tant for use of the Andreas arm and MoveIt!.

Table 3.2: The custom packages used in the SAC system. the scorbot config,
andreas arm config, and sac config packages are not currently in use in the SAC
system as they are only necessary for MoveIt!.

[49, 50, 51, 52, 53, 54, 55, 56, 57, 71]

• ROS Computational Graph Messages – includes messages used internally in

the ROS system [60].

Messages are published on topics that can be received by any node. The

SAC system contains several custom ROS message types that are included in the

sac msgs project for both node and service messages [54], shown in Table 3.3.
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Name Type Include File Purpose
HandPos Message sac msgs\HandPos.h Tells the hand the

width it should be
at.

Path Message sac msgs\Path.h Defines a line for
the end-effector of
the arm to move
along.

Target Message sac msgs\Target.h Defines a goal for
the end-effector to
move to.

Encoder Service sac msgs\Encoder.h Determines if a
joint switch is hit.

MotorPosition Service sac msgs\MotorPosition.h Stepper ticks for
the motor to move.

MotorsComplete Service sac msgs\MotorsComplete.h Whether all motors
have completed
movements.

MotorsOffset Service sac msgs\MotorsOffset.h A home offset to
set the motors to.

MotorSpeed Service sac msgs\MotorSpeed.h The speed for a mo-
tor to move at 1

through 9 then 0.

Table 3.3: The messages provided by the sac msgs project [54].
[61]

3.3 Structure

The control system is used to control either the physical or simulated robot, or

both simultaneously. The control structure shown in Figure 3.1 is divided into

three sections: controllers, translators, and drivers. Controllers provide overall

instructions to the system. Translators convert from the controller’s global goals to

the joint space goals of the arm. Drivers will send instructions to the hardware

and simulator.
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Figure 3.1: The topology of the implemented ROS system is detailed in the above
figure. The orange nodes represent the individual ROS nodes that make up the
system, green nodes indicate external items, and blue indicate the ROS messages
passed with the given message topic and type. The first section to the left is the
controllers, in the middle are the translators, and on the right are the drivers. These
sections are detailed in Figures 3.2, 3.3, 3.6 respectively.



16

Figure 3.2: Controllers are used to send overall goals for the arm.

3.3.1 Controllers

The controllers of the system provide overall instructions to the system. The

controllers are detailed in Figure 3.2.

3.3.1.1 Towers of Hanoi

The Towers of Hanoi controller provides a demo of the robot’s movements in a

static scenario This controller is written in C++. It publishes ”moveto” messages

of type ”Target” with end-effector positions, and ”handDriver” messages of type

”HandPos” with hand widths.
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3.3.1.2 API Controller

The API controller takes in input from an Internet connection and publishes

commands to the system. This controller is written in Python. The node uses get

requests and parses the URL for each parameter of the arm movement. The URL

formatting is as ”ip:8080/x/y/z/roll/pitch/handWidth/time” where ”ip” is the

IP address of the computer running the node, ”x”, ”y”, and ”z” are the Cartesian

coordinates of the end-effector, ”pitch” and ”roll” are the angle parameters of the

end-effector, ”handWidth” is the opening width of the hand, and ”time” is the

time taken for these moves. The code for this node is a common standard form for

a Python Server and is similar to the following sources [62, 63, 64]. It publishes

”moveto” messages of type ”Target” with end-effector positions, and ”handDriver”

messages of type ”HandPos” with hand widths. A test program has been written

as a shell script to communicate with the API over the Internet and perform the

Towers of Hanoi solution. This program is placed in the examples folder of the

sac setup project [42].

3.3.1.3 Custom Controller

The Custom controller is a template for use by students when building their own

nodes. It may be copied and easily modified with little knowledge of ROS or the

rest of the SAC system.

3.3.2 Translators

Translators convert incoming Cartesian goals to joint space goals for the motors.

The translators are detailed in Figure 3.3.
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Figure 3.3: Translators are used to translate the inputs from the controllers to the
joints.
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3.3.2.1 Scorbot IK

This translator performs the inverse kinematics and goal checking for the Scorbot

er-III. It takes in ”moveto” messages of type ”Target” with end-effector positions,

and publishes ”baseMotor”, ”shoulderMotor”, ”elbowMotor”, ”pitchMotor”, and

”rollMotor” messages of type ”MotorPos” with radian angles for each motor.

Inverse kinematics equations can be derived one of two ways. First is geometrically

[65]. This method looks at the joints of the robot and uses trigonometric identities

to calculate the angles of the robot [65]. The second method is through the Denavit-

Hartenberg (D-H) method. This method uses tables and matrices generated by

the robot configuration to produce equations [66]. This project uses the Geometric

approach, outlined by [65], as it is more straight forward and self-explanatory. For

all equations and modeling, the ROS standard units will be used for measurements

as follows:

• Lengths: Meters (m) [67]

• Angles: Radians [67]

• Time: Seconds (s) [67]

• Weights: Kilograms (kg) [67]

The following equations are used for each motor translation:

For the given arm lengths (meters):

• d0 = 0.360 [68]

• d1 = 0.030 [68]

• d2 = 0.220 [68]
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• d3 = 0.220 [68]

• d4 = 0.140 [68]

For the given limits (radians):

• −2.7053 < θB < 2.7053

• −0.6109 < θS < 2.2689

• −2.2689 < θE < 2.2689

• −2.2689 < θP < 2.2689

The base angle (θB) for the robot, illustrated in figure 3.4, is determined by

θB = atan2(y, x) (3.1)

Where x and y are the given end-effector goals for their respective axis.

The projected height (d4z) and radius (d4r) of the d4 link can be found using the

input θPITCH by the equations

d4z = sin(θPITCH) · d4 (3.2)

and

d4r = cos(θPITCH) · d4 (3.3)

It is now beneficial to determine the total length from the center of the robot to

its end-effector, the total radius (r). This can be done by using the inputs x and y.

r =
√

x2 + y2 (3.4)
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Figure 3.4: A side view of the arm with the inverse kinematics variables. Black
solid lines indicate the links of the robot in the primary position. Black dashed
lines indicate the alternate positions of the robot links. Large black dots indicate
the joints of the robot. Blue angles, dashed lines, and labels indicate the joint
angles of the robot. Green dashed lines, angles and labels indicate the intermediate
variables used in the calculation of the joint angles. Gray labels indicate the known
values of the end-effector that are passed in and for the lengths of the arm links.
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Figure 3.5: A top view of the arm with the inverse kinematics variables. Black solid
lines indicate the links of the robot in the primary position. Black dashed lines and
labels indicate the alternate positions of the robot links. Large black dots indicate
the joints of the robot. Blue angles, dashed lines, and labels indicate the joint
angles of the robot. Green dashed lines, angles and labels indicate the intermediate
variables used in the calculation of the joint angles. Gray labels indicate the known
values of the end-effector that are passed in and for the lengths of the arm links.
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Using the results of the Equations 3.2 and 3.3, the height (ez) and radius (er)

change from the shoulder joint (θS) to the wrist pitch joint (θP) opposite the elbow

joint (θE) can now be derived as

ez = z + d4z − d0 (3.5)

and

er = r− d1 − d4r (3.6)

Using the values produced by Equations 3.5 and 3.6, the total length from the

shoulder (θS) to the wrist pitch joints (θP) found using

e =
√

e2
r + e2

z (3.7)

The elbow joint (θE) can now be determined. This equation comes from [65].

θE = atan2(

√
1−

e2
r + e2

z − d2
2 − d2

3
2 · d2 · d3

2

,
e2

r + e2
z − d2

2 − d2
3

2 · d2 · d3
) (3.8)

The angle θEz between the er and e measurements can be found using the law

of cosines as

θEz = acos(
e2

z − e2 − e2
r

−2 · e · er
) (3.9)

Using the law of cosines again the angle θA between the e measurement and

the d4 link can be found by

θA = acos(
d2

3 − d2
2 − e2

−2 · d2 · e
) (3.10)



24

Using the Equations 3.9 and 3.10, the shoulder joint (θS) can be found, as shown

by

θS = θA − θEz (3.11)

The wrist pitch joint can now be found using the known angles around the

joint as shown by

θP = θPITCH − (θE − θS) (3.12)

The wrist roll angle (θR) is known from the given user inputs as is given by the

equation

θR = θROLL (3.13)

3.3.3 Drivers

The drivers for the system take in messages from all other nodes and send com-

mands to the hardware of the system. The drivers are detailed in Figure 3.6.

3.3.3.1 Base, Shoulder, Elbow, Pitch, and Roll Drivers

These drivers take inputs, check them, and publish them to various messages

to control their respective motors. They all take in ”{joint}Motor” messages,

where {joint} is the name of the joint, of type ”MotorPos” and publishes ”scor-

bot/{joint} position controller/command” messages, with ”wrist ” added in front

of ”[joint]” for the wrist joints, of type ”Float64”, ”motorPosition” messages of type

”MotorPosition”, ”motorSpeed” messages of type ”MotorSpeed”, and ”encoder”

messages of type ”Encoder”.
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Figure 3.6: Drivers are used to do low level hardware interfacing.
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Topic Type In/Out
base driver

baseMotor MotorPos In
scorbot/base position controller/command Float64 Out
motorPosition MotorPosition Out
motorSpeed MotorSpeed Out
encoder Encoder Out

shoulder driver
shoulderMotor MotorPos In
scorbot/shoulder position controller/command Float64 Out
motorPosition MotorPosition Out
motorSpeed MotorSpeed Out
encoder Encoder Out

elbow driver
elbowMotor MotorPos In
scorbot/elbow position controller/command Float64 Out
motorPosition MotorPosition Out
motorSpeed MotorSpeed Out
encoder Encoder Out

pitch driver
pitchMotor MotorPos In
scorbot/wrist pitch position controller/command Float64 Out
motorPosition MotorPosition Out
motorSpeed MotorSpeed Out
encoder Encoder Out

roll driver
rollMotor MotorPos In
scorbot/wrist roll position controller/command Float64 Out
motorPosition MotorPosition Out
motorSpeed MotorSpeed Out
encoder Encoder Out

Table 3.4: A summary of the inputs and outputs of the motor drivers.

3.3.3.2 USB Driver

This driver is a series of services that communicate with the serial interface of the

robotic arm through a USB adapter. This node combines several services into one

to allow for communication with the USB without interruption, as ROS queues
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each request and runs them serially. This node takes in ”motorSpeed” messages of

type ”MotorSpeed”, ”motorPosition” messages to type ”MotorPosition”, ”motor-

sOffset” messages of type ”MotorsOffset”, ”motorsComplete” messages of type

”MotorsComplete”, and ”encoder” messages of type ”Encoder”.

3.4 Simulation

For testing the software a simulator is used to show the output from SAC system,

This Gazebo simulator works on Windows OSX, and Linux [69]. This simulator is

free and open source. The model of the Scorbot used for the project is modified

from [70].

3.5 Hardware

Due to time limitations, this project has choden to use the SCORBOT-ER III as its

robotic arm. The Scorbot is a simple 5 DoF, available to the school currently.

3.6 Source Control

The system has been placed on GitHub for source control and documentation.

A ROS workspace contains absolute file paths and does not transfer well from

system to system. The project has been published as individual packages and

a project for installation these can be found at https://github.com/greenpro/

[50, 49, 71, 51, 52, 53, 54, 55, 56, 42].
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3.7 Documentation

The project is documented directly in readme files that are in every folder and

project. These documentation files detail the files, subfolders, removable files, and

any notes for the immediate folder.

3.8 Installation

The system can be installed on Ubuntu 16.04 by running installing git using the

apt-get install command. The user can then clone the SAC Setup project and

run the sac setup.sh script [42]. To build and run the system, the user may run

”./build.sh” from the ” /sac/” directory, then ”roslaunch sac launch {launch file}”

where ”{launch file}” is the first word of the controller to be used followed by a

”.launch” (e.g. ”roslaunch sac launch towers.launch”).

3.9 Educational Uses

A robotic arm can be used to teach many difficult concepts in robotics and other

classes as shown in previously mentioned works. The initial use of this particular

arm will be specific to a graduate robotics class, though future uses could go far

beyond just one class. The initial concepts this robot is intended to teach include:

robot construction and design, kinematics, inverse kinematics, Jacobians, and robot

control frameworks. This list may be expanded later on to include more concepts

and areas in the future.



29

3.10 Bill of Materials

The bill of materials was modified by the proposal committee to use a Raspberry

Pi 3 and The SCORBOT-ER III available in the lab. Thus, no hardware or software

acquisitions were made in the completion of this project.

3.11 Tasks and Milestones

Milestones Task Group Projected Hours Actual Hours
1 Documentation 40 25

1 Research and BOM 220 268

2 ROS Setup 4 14

2 Raspberry Pi Setup 12 18

3 Boot Sequence 12 -
4 Simulator 20 72

5 Motor Drivers 14 13

5 Encoder Drivers 10 11

6 Hand Drivers 10 9

7 Menu Service 8 -
7 Display Driver 4 13

8 Custom Controller 4 2

8 Inverse Kinematics Service 18 130

9 Jacobian Service 18 25

10 Towers of Hanoi Controller 18 60

11 API Controller 22 6

- Project Meetings - 16

Total Hours 434 682

Table 3.5: The above table shows the list of task groups for each module. The
modules and tasks are in the order of completion for the project. A full list of tasks
can be found in Appendix

The Table 3.5 shows the list of milestones shown as project modules in the first

column. Under each milestone is a list of task groups.

The deliverables for the project include a software stack, documentation, and
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simulation of the a robot arm. The system is set up for use in a classroom

environment and is ready for labs.

Parts of the project have been delayed due to others taking longer than they

were expected. This is the case in the use of MoveIt!, included in the Inverse

Kinematics and Jacobian Services task groups. MoveIt! had many issues in its

setup, as well as, a general misunderstanding of the software’s capabilities, by the

author, in its the current version. The second part of the project that took a large

amount of time is the difficulty of grasping items in the Gazebo simulator; this

time is factored into the Towers of Hanoi Controller. Much of the research spent

at the start of the project comes from time spent looking at other projects and the

process of settling on the current project. Due to time issues, the Raspberry Pi has

been replaced by a PC running Ubuntu 16.04. For this reason the Boot Sequence

and Menu Service tasks were not completed as they are only necessary for the

Raspberry Pi. The Jacobian node has been taken out as it was not needed, as

the SCORBOT robots are not good at drawing and moving with precise speeds

[31, 61].
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Chapter 4

Results

The SAC system consists of eleven projects, documented by thirty readme files.

Ten packages are in the system. They build eleven nodes that publish on seventeen

topics with nine custom message types and a standard message type. Six external

packages are used in the system for integration and fixes.

4.1 ROS Nodes

The system is easy to run by simply using one of the provided launch files in the

SAC launch project. The system functionality has been demonstrated through

several controllers. These controllers display pre-programmed movements and

real-time integration.

The Inverse Kinematics for the robot were worked out by hand using the

geometric method. This was significantly slowed down due to automated tools,

such as MoveIt! and its plug-in IKfast not working as expected.

The Towers of Hanoi controller has successfully completed moving the tower

of blocks from one position to another. The sequence takes approximately 7.5
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minutes to run and completes a three block tower in seven moves. This node

demonstrates a C++ node for the system. Due to the issues with gripping objects,

for this controller repeatability is low and may only last for one run before the

tower collapses.

Gazebo causes a few issues with this node. The first is the ability to grasp

objects. This issue has been fixed through the addition of the gazebo grasp plugin

by [48]. A second issue is with the Gazebo simulator’s ability to simulate the

physics of an object. Objects can sometimes sink into the floor or other objects. This

issue was not as easily overcome as the gripper and remains to be an issue with

the simulation. Time constraints did not allow for these issues to be investigated

further.

The API controller for the system allows an external piece of code to control

the program through an Internet connection. The API controller is an example of

a python node. A shell script has been written to test the node by running Linux

wget commands on the API.

4.2 Hardware

A Raspberry Pi was not used in the system as a laptop computer was readily

available and allows for a much more flexible system. This also allowed time to be

spent elsewhere as time was limited for this project.

4.3 Installation

The project can be easily installed through the scripts provided in the SAC setup

project. Installing the system, from Ubuntu 16.04 download, to a fully running
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system, takes approximately an hour. The installer downloads and installs all

necessary components for the system with the exception of Git, which must be

downloaded separately, since the project resides on Github.

4.4 Documentation

The project has been documented through the use of Github-formatted readme

files. These provide all the necessary information for running, editing, and adding

to the system.
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Chapter 5

Conclusion

The SAC system is a software control stack built on ROS for a robotic arm built

on ROS for use in a classroom environment. Students may implement, modify

and test various parts of the system for classes and projects. The functionality

of the project is implemented in the control of the 3D simulation of the 5 DoF

SCORBOT-ER III robotic arm.

5.1 Future Work

Future work for the project will consist first of completing the integration of MoveIt!

into the SAC system. This will allow objects to be picked up more consistently.

Most of the issues with picking things up comes from the fact that Gazebo is not

fully developed and is still missing some features [72]. Other fixes will help to

make picking up and putting down objects more consistent. Node testing should

also be added to the project to ensure correctness [73]. The SAC system should be

integrated with the SCORBOT-ER III hardware in the Future, and possibly move

to the arm by Andreas Hölldorfer [25, 26].
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Appendix A

Requirements

A.1 Software

Software requirements for the system. The italicized items were not completed.

A.1.1 Raspberry Pi Software

Controller computer requirements for the system. The italicized items were not

completed.

1. The Raspberry Pi should run the Raspian Operating System.

2. The Raspberry Pi will run ROS for the robot control.

3. The ROS system should contain a node for controlling the motors.

4. The ROS system should contain a node for controlling the encoders.

5. The ROS system should contain a node for controlling the hand servos.

6. The ROS system should contain a node for controlling the display text and managing

the menu system.
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7. The ROS system should contain an inverse kinematics service node.

8. The ROS system should contain a Jacobian service node.

9. The ROS system should contain a custom controller node.

10. The ROS system should contain a Towers of Hanoi Controller node.

11. The ROS system should contain an API controller node.

A.1.2 Simulation and Remote Control Software

Simulation and remote control software requirements for the system.

1. The remote computer should run the simulator for the robot.

2. The remote computer should be able to run all of the Raspberry Pi nodes for

use with the simulator or remote operation.

3. The remote computer should be able to run any of the control nodes for

remote programming and testing of the system.

4. The remote system should be able to run a web browser to interact with the

API node of the robot.

A.2 Installation

System installation requirements for the system.

1. The user should be able to install the robot software by copying the project

files from the repository to the project on their own system.
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A.3 Running

Requirements for running the system the system. The italicized items were not

completed.

1. The project should be able to be run through a ROS launch file that will

launch all of the nodes on the system.

2. The system on the Raspberry Pi should startup automatically once Raspian has

started as a background task.

A.4 Modification

Modification requirements for the system. The italicized items were not completed.

1. Students should be able to modify the system by removing and rewriting a

node.

2. Students should be able to write the code for the custom controller to modify

the arm for other uses.
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